IBIS-AMI Terminology Proposal

őŐŐŐ

°0₀~ ΠŎ

õÕ 0 0

0

öuö 0°0

0.

ů,

Őn

0

Ŭŏ Ĵĵ

οō

SiSoft IBIS-ATM Working Group 6/3/08

Background

- We use terminology from LTI system theory to describe IBIS-AMI simulation results, for example:
 - Waveform @ RX sampler
 - $= \mathsf{p}(\mathsf{t}) \, \otimes \, \mathsf{b}(\mathsf{t}) \, \otimes \, \mathsf{h}_{\mathsf{TE}}(\mathsf{t}) \, \otimes \, \mathsf{h}_{\mathsf{CR}}(\mathsf{t}) \, \otimes \, \mathsf{h}_{\mathsf{RE}}(\mathsf{t})$
- AMI models can provide equalization from either (or both) AMI_Init and AMI_Getwave calls, and those equalization behaviors can be different:
 - TX equalization separated into $h_{TEI}(t)$ and $h_{TEG}(t)$
 - RX equalization separated into $h_{REI}(t)$ and $h_{REG}(t)$

The Issue

- Referring to TX and RX Getwave equalization as h_{TEG}(t) and h_{REG}(t) implies the result can be derived through convolution, which isn't true
- h_{TEG}(t) and h_{REG}(t) can be nonlinear and/or timevarying, which is inconsistent with LTI terminology
- Consider a waveform from a TX model with AMI_Init and an RX DFE model with AMI_Getwave:

 $\mathsf{p}(t) \otimes \mathsf{b}(t) \otimes \mathsf{h}_{\mathsf{TEI}}(t) \otimes \mathsf{h}_{\mathsf{CR}}(t) \otimes \mathsf{h}_{\mathsf{REG}}(t)$

 Since RX GetWave behavior is non-linear, the convolution operator doesn't apply and the current terminology is imprecise

IBIS-ATM Terminology Proposal - IBIS-ATM Working Group - June 3, 2008

© 2008, SiSoft. All Rights Reserved

The Issue (cont'd)

• Current terminology also implies the order of operations doesn't matter, for instance

 $\begin{array}{l} \mathsf{p}(t) \otimes \mathsf{b}(t) \otimes \mathsf{h}_{\mathsf{TEI}}(t) \otimes \mathsf{h}_{\mathsf{CR}}(t) \otimes \mathsf{h}_{\mathsf{REG}}(t) \\ \text{versus} \\ \mathsf{h}_{\mathsf{REG}}(t) \otimes \mathsf{p}(t) \otimes \mathsf{b}(t) \otimes \mathsf{h}_{\mathsf{TEI}}(t) \otimes \mathsf{h}_{\mathsf{CR}}(t) \end{array}$

• This is incorrect when GetWave is nonlinear and/or time-varying (which it usually is!)

Proposed Solution

- Use terminology for GetWave that does not imply LTI behavior
- G_{XEG()} refers to a function that takes a time-domain waveform and produces a time-domain waveform:
 - AMI_Init remains $h_{TEI}(t)$ and $h_{REI}(t)$
 - AMI_GetWave becomes $G_{TEG}($) and $G_{REG}($)
- The TX_Init / RX_Getwave case becomes
 - $G_{REG}(p(t) \otimes b(t) \otimes h_{TEI}(t) \otimes h_{CR}(t))$
 - The order in which convolution is applied does not matter
 - G_{REG} is applied to the output of the final convolution

Practical Considerations

- Terminology must be suitable for plain-text communication without special fonts
 - "⊗" becomes "*" as before
 - $G_{TEG}()$ and $G_{REG}()$ become $G_{teg}()$ and $G_{reg}()$
- There should be a benefit; new terminology should allow us to describe things more precisely and have clear discussions that weren't possible before
 - We maintain this terminology makes discussions of the "reference flow" and consequences of "Use_Init_Output" much easier

Use_Init_Output

- Use_Init_Output is independent for TX and RX models
- There are 4 possible cases to consider:

Case	TX Use_Init_Output	RX Use_Init_Output
1	False	False
2	False	True
3	True	False
4 (Default)	True	True

 The following slides consider cases where TX and RX models implement both AMI_Init and AMI_Getwave – other cases are simpler

Case 1: TX = False, RX = False

- Impulse response input to TX AMI_Init
 - $-h_{CR}(t)$

NOOL

000

00

000

olog

00

0800

000

°U

- Impulse response input to RX AMI_Init
 - $\ h_{\text{TEI}}(t) \, \otimes \, h_{\text{CR}}(t)$
- Impulse response output from RX AMI_Init
 - $\ \ h_{\text{TEI}}(t) \, \otimes \, h_{\text{CR}}(t) \, \otimes \, h_{\text{REI}}(t)$
- Waveform input to TX AMI_Getwave
 - $\hspace{0.2cm} p(t) \otimes b(t) \otimes h_{CR}(t)$
- Waveform input to RX AMI_Getwave
 - ${G_{\text{TEG}}}(\text{ p(t)}\otimes\text{b(t)}\otimes\text{h}_{\text{CR}}(\text{t})$)
- Waveform output from RX AMI_Getwave
 - $G_{\text{REG}}(~G_{\text{TEG}}(~p(t) \otimes b(t) \otimes h_{\text{CR}}(t)~)$)

Case 2: TX = False, RX = True

- Impulse response input to TX AMI_Init
 - $-h_{CR}(t)$

NOOL

000

00

1000

SOOR

00

0800

000

°U

- Impulse response input to RX AMI_Init
 - $\ \ h_{\text{TEI}}(t) \, \otimes \, h_{\text{CR}}(t)$
- Impulse response output from RX AMI_Init
 - $\ \ h_{\text{TEI}}(t) \, \otimes \, h_{\text{CR}}(t) \, \otimes \, h_{\text{REI}}(t)$
- Waveform input to TX AMI_Getwave
 - $~ p(t) \otimes b(t) \otimes h_{CR}(t) \otimes h_{REI}(t)$
- Waveform input to RX AMI_Getwave
 - ${\rm G}_{\rm TEG}(~p(t)\otimes b(t)\otimes h_{\rm CR}(t)\otimes h_{\rm REI}(t)$)
- Waveform output from RX AMI_Getwave
 - G_{REG}(G_{TEG}(p(t) \otimes b(t) \otimes h_{CR}(t) \otimes h_{REI}(t)))

Case 3: TX = True, RX = False

- Impulse response input to TX AMI_Init
 - $-h_{CR}(t)$

NOOL

000

00

1000

SOOR

00

0800

000

° U O

- Impulse response input to RX AMI_Init
 - $-h_{TFI}(t) \otimes h_{CR}(t)$
- Impulse response output from RX AMI_Init
 - $h_{TFI}(t) \otimes h_{CR}(t) \otimes h_{REI}(t)$
- Waveform input to TX AMI_Getwave
 - $p(t) \otimes b(t) \otimes h_{CR}(t) \otimes h_{TEI}(t)$
- Waveform input to RX AMI_Getwave
 - $G_{TEG}(p(t) \otimes b(t) \otimes h_{CR}(t) \otimes h_{TEI}(t))$
- Waveform output from RX AMI_Getwave
 - $G_{REG}(G_{TEG}(p(t) \otimes b(t) \otimes h_{CR}(t) \otimes h_{TEI}(t)))$

Case 4: TX = True, RX = True

- Impulse response input to TX AMI_Init
 - $-h_{CR}(t)$

NOON

<u>o</u>U o

0

°Ü°Ü°

ñoll

n o

ទំរុំតំព័ត្

ŐŝŝŐ

°OQÃ

°U

Ōĵŝ

- Impulse response input to RX AMI_Init
 - $\ \ h_{\text{TEI}}(t) \, \otimes \, h_{\text{CR}}(t)$
- Impulse response output from RX AMI_Init
 - $\ \ h_{\text{TEI}}(t) \, \otimes \, h_{\text{CR}}(t) \, \otimes \, h_{\text{REI}}(t)$
- Waveform input to TX AMI_Getwave
 - $\ \mathsf{p(t)} \otimes \mathsf{b(t)} \otimes \mathsf{h}_{\mathsf{CR}}(t) \otimes \mathsf{h}_{\mathsf{TEI}}(t) \otimes \mathsf{h}_{\mathsf{REI}}(t)$
- Waveform input to RX AMI_Getwave
 - $G_{TEG}(p(t) \otimes b(t) \otimes h_{CR}(t) \otimes h_{TEI}(t) \otimes h_{REI}(t))$
- Waveform output from RX AMI_Getwave
 - G_{REG}(G_{TEG}(p(t) \otimes b(t) \otimes h_{CR}(t) \otimes h_{TEI}(t) \otimes h_{REI}(t)))

Observations

- In all cases, the best-case (least distorted) input to TX AMI_GetWave is $p(t) \otimes b(t) \otimes h_{CR}(t)$
 - Input bit stream may not be readily recoverable, which has implications for the model code
- In case 3, the input to TX AMI_GetWave includes the TX_AMI equalization h_{TEI}(t)
 - TX AMI_GetWave call must be written accordingly. Not a big problem since $h_{TEI}(t)$ is contained in the same model
- In cases 2 and 4, the input to TX AMI_GetWave includes the RX AMI_Init equalization h_{REI}(t)
 - Potentially an issue, since the writer of TX AMI_GetWave has no control over h_{REI}(t)

Summary

- New terminology for AMI_GetWave math is more precise; supports clearer discussions
- Reference flows outlined with new terminology for different values of Use_Init_Output
- Potential modeling issues identified for subsequent discussion

